

Monitor inteligente para válvula diafragma

- Calibração automática
- Sensoriamento totalmente eletrônico do posicionamento da válvula
- LEDs "Extra Brilho" para indicação de posição da válvula
- Display Digital Local com diagnósticos inteligentes
- Ajuste do posicionamento da válvula sem interfêrencia humana
- Sensoriamento da posição sem atrito
- Monitor inteligente para válvulas de até 4"
- Alta Resolução 0.2mm
- Válvula Solenóide Low Power (opcional)
- Indicator Visual Local (opcional)

I-VUE - Inovação em Monitoração de Válvulas

O sensor para monitoração de válvulas I-VUE foi desenvolvido pela Sense, líder em tecnologia de sensoriamento e equipamentos eletrônicos. Equipado com um preciso sistema de detecção sem contato e eletrônica avançada, o I-VUE é acionado e calibrado através de três botões magnéticos.

Com características adicionais tais como LEDs brilhantes, indicador visual local, solenóide low Power e garantia de dois anos, pode-se especificar o mais compacto e completo sistema inteligente para monitoração de válvulas diafragma.

Fechado

LEDs de Alta Visibilidade

Posição aberta ou fechada da válvula é facilmente identificada, podendo ser vista de quase todos os ângulos.

Posição da Válvula

Os LEDs mostram a posição da válvula. Acendendo verde quando a válvula está aberta e vermelho quando está fechada.

Mesmo na falta de energia a posição da válvula pode ser observada através do indicador visual local.

Um indicador de posição operado por uma mola se movimenta dentro da tampa transparente, independente do curso e do tamanho da válvula.

Auto-Calibração

Tudo que o sensor inteligente necessita é de alimentação em 24Vcc

e uma chave magnética. O sensor acionará e desacionará a solenóide, fazendo com que a válvula abra e feche até aprender o tempo de abertura e fechamento da válvula. Esta calibração elimina a remoção de tampas, configuração de chaves fim de curso, ferramentas e equipamentos de monitoração que somente podem ser configuradas na sala de controle.

Aberto

Display Digital para Diagnóstico

Outra novidade são os diagnósticos inteligentes. Esta característica única mostra todos os códigos de alarme, levando a uma correção oportuna e imediata ou indicando a

tendência de algum problema futuro. O display também é fundamental para a configuração do sensor.

Alarme de Manutenção Preventiva

O sensor I-VUE foi desenvolvido também pensando como prevenir o mau funcionamento da válvula, pelo desgaste de peças mecânicas. Para ajudar nisso, pode-se definir o número de ciclos de acionamento, e quando esse valor for atingido, um alarme é gerado, permitindo a manutenção preventiva das partes da válvula ou do atuador.

EonF A

Medindo Tempo de Vida Útil

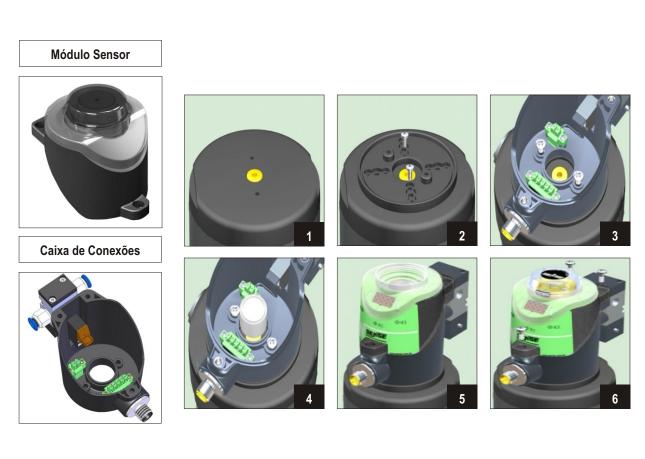
Esta característica do sensor faz com que se torne fácil de monitorar o tempo de vida útil da válvula / atuado, pois indica o número total de ciclos, independentemente do reset da contagem para manutenção preventiva.

Alarme de Tendência à Problemas Mecânicos

O sensor tem um tempo necessário para abrir e fechar a válvula. Se ocorrerem mudanças significativas neste tempo, para além dos limites de 30%, 40% ou 50%, um alarme de diagnóstico será gerado, mostrado no display ou ou enviadas para o CLP, em caso das versões para redes industriais.

Outro problema mecânico é com relação ao deslocamento do eixo. O sensor pode gerar um alarme individualment programado de 10%, 20% ou 30% para a posição aberta e de 10%, 20%, 30%, 40% ou 50% para a posição fechada.

O mais completo e compacto sistema de automação para válvulas diafragma


IP 66

Alto grau de proteção contra penetração de líquidos.

Visão Geral

Processo de Montagem

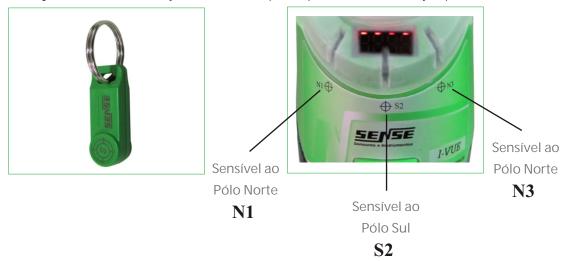
Princípio de Operação

O princípio de operação é baseado na detecção sem contato do eixo do atuador.

Um circuito elétrico converte a variação do campo eletromagnético em um sinal que é proporcional ao deslocamento no circuito interno do sensor.

Com sua eletrônica sofisticada o sensor detecta movimentos de até 0,2mm com alta resolução de 16 bits.

Botões Magnéticos


O sensor é equipado com três botões magnéticos, que promove um maior grau de proteção, fazendo com que o sensor se torne mais imune à penetração de líquidos que se fosse equipado com botões mecânicos.

Os botões permitem configurar todas as funções e ajuda a prevenir que pessoas não autorizadas façam mudanças nas configurações, pois eles precisam saber a sequência e a polarização correta dos botões.

Chaveiro Magnético

O sensor é fornecido com um chaveiro magnético que tem dois pólos "N" Norte e "S" Sul. Para acionar os botões magnéticos, aproxime o chaveiro magnético com a polaridade correta do alvo magnético e observe a indicação de acionamento pelo respectivo LED de sinalização que acenderá e, vermelho.

Auto-Calibração

O sensor tem um sistema de calibração automática, ativado pela aproximação do chaveiro magnético com o pólo Norte "N" no alvo N3 por três segundos. O sensor executará o processo de auto-calibração independente de qualquer conexão com o sistema de controle, tornando o processo de configuração muito mais rápido e eficiente.

A válvula solenóide será acionada para controlar o atuador em 3, 5 ou 10 ciclos consecutivos para aprender a posição aberta e fechada da válvula de acordo com o deslocamento do eixo.

Acionamento Manual da Válvula Solenóide

Se o sensor for montado com uma válvula solenóide, esta pode ser acionada apenas aproximando o chaveiro magnético com o pólo Norte "N" do alvo magnético N1 por 3s. Para desacionar repita o mesmo processo.

É possível também forcar o acionamento da solenóide pelo botão de acionamento manual no corpo da válvula.

O led verde acima do botão magnético N1, indica o acionamento da solenóide.

Configuração da Senha

A configuração do sensor pode ser protegida por uma senha, prevenindo que pessoas não autorizadas possam fazer modificações nos parâmetros configurados. Esta senha pode ser definida no menu de configurações.

Modo Economia de Energia "Sleep"

Embora o display e os LEDs de sinalização consumam baixa energia, o menu de configurações permite que eles sejam desligados se os botões magnéticos não forem acionados, de modo a economizar energia ou quando a sinalização não fizer diferença para o funcionamento do sistema.

Após o tempo selecionado (5 a 15 min) os LEDs e o display se apagam.

O retorno da sinalização ocorre quando o sensor gerar algum alarme, quando os botões magnéticos N1, S2 ou N3 forem acionador ou quando o sensore receber algum comando do CLP.

Alarme de Abertura e Fechamento da Válvula

O sensor tem uma característica inteligente que "aprende" durante a calibração automática o tempo de abertura e fechamento da válvula. Quando esse tempo passar do limite pré-programado, o sensor gera um alarme que indica uma tendência de anormalidade para os parâmetros abaixo:

Nota: Se o processo tiver uma grande variabilidade, ou variações no sistema de ar comprimido, ou usar fluidos diferentes, ocasionando diferença de tempo na abertura e fechamento da válvula, pode-se aumentar ou diminuir a tolerância utilizada pelo alarme, ou mesmo inibir o seu funcionamento.

- Ar comprimido (pressão, vazamento, conexões, etc.);
- Desgaste mecânico (buchas, juntas, eixos, assentos, molas, guias, etc.);
- Decorrentes do processo (corrosão, incrustações, viscosidade)

Indicação no Display Digital

O display é o principal portal de comunicação para os usuários e técnicos que instalam o sensor pela primeira vez, ou em sua manutenção. Através do menu principal, é possível definir o que a tela irá mostrar durante a operação normal: dias trabalhados, contador parcial, contador total (vida útil) ou posição da válvula.

Dias Trabalhados

Contador Parcial

Contador Total

Posição da Válvula

Indicação de Alarmes

O display mostra o código de alarme por 5 segundos e o LED acima do botão magnético N3 pisca verde/ vermelho indicando o alarme. O usuário pode ver a qualquer momento o código do alarme apenas aproximando o chaveiro magnético com o pólo Norte "N" do botão magnético N3, assim o display mostrará o código de alarme por 5 segundos.

Caso o sensor gere os alarmes 4, 5, 6, 8 ou 9 as duas saídas assumem nível lógico "1" e o alarme é enviado ao CLP.

Código	PNP	AS-Interface	DeviceNet						
AL 1	Alarme	do contador parcial							
AL 2	alarm d	le dias trabalhados							
AL 3	Al	arme de data							
AL 4	Alarme de tempo de a	abertura e fechamento da vá	álvula						
AL 5	Coma	ndo da solenóide							
AL 6	Eix	o fora de curso							
AL 7	Mudança de	Mudança de posição não esperada							
AL 8	Curto ci	Curto circuito na solenóide							
AL 9	Bot	oina danificada							
AL 10	Alarme de	e temperatura interna							
AL 11	Saída PNP em curto (1 ou 2)	-	-						
AL 12		-							
AL 13		-	Endereço duplicado						
AL 14		-	Sensor não endereçado						
AL 15	-	Fonte for	a de faixa						

Contadores de Ciclos de Atuação da Válvula

O sensor tem dois contadores que indicam o número de ciclos realizados pela válvula e podem ser mostrados no display.

Contador Parcial

Ajuda na manutenção preventiva, permitindo o técnico configurar um alarme individual para avisar quando é necessário trocar partes móveis da válvula, tais como: diafragma, gaxetas, assentos, etc.

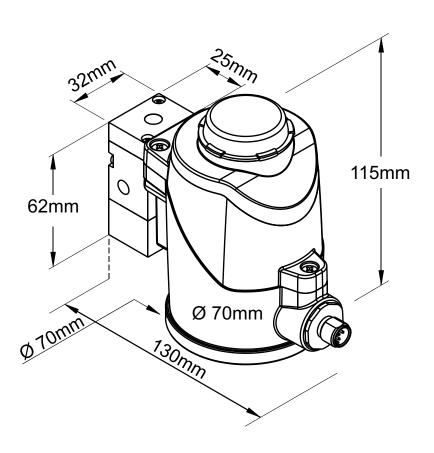
Depois da manutenção preventiva, o contador pode ser zerado e um novo número de ciclos pode ser configurado para a próxima manutenção preventiva.

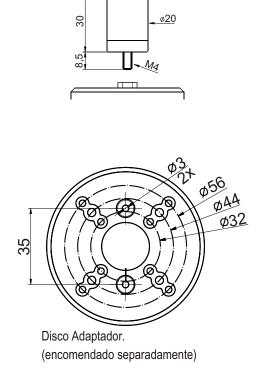
Contador de Vida Útil

É um contador total, ou seja, a contagem não é zerada mesmo quando o contador parcial é zerado várias vezes.

Este contador foi projetado para indicar o número total de ciclos, independente de toda e qualquer manutenção preventiva realizada e é usado para identificar o tempo de vida útil do sistema (válvula / atuador).

Sua capacidade máxima é de 99.10⁶ ciclos e somente pode ser zerado pelo menu principal no caso de substituição por uma nova válvula.


Notação


O display utiliza a notação de engenharia (BASE 10) para indicar o número de ciclos, ou seja:

XY*10^z XY*EZ

Indicação de Numeros de Ciclos						
10E3	10 * 10 ³	10 X 1000	10.000 ciclos			
21E2	21 * 102	21 X 100	2.100 ciclos			
51E4	51 * 104	51 X 1000	510.000 ciclos			

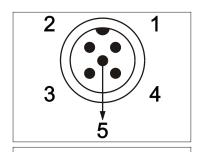
Desenhos Mecânicos

Acionador

I-VUE: Discreto - Saída PNP

A saída eletrônica PNP do sensor destina-se a substituir as chaves mecânicas básicas, sujeitas a falhas de contato, desgaste mecânico e alterações do ponto de acionamento.

A saída 1 tem como objetivo indicar quando a válvula está aberta, e envia este sinal para o cartão de entrada do CLP. Operação sinalizada pelo indicador visual local e pelos LEDs acesos em verde.

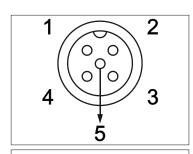

A saída 2 indica que a válvula está fechada, e envia este sinal para o cartão de entrada do CLP. Operação sinalizada pelo indicador visual local e pelos LEDs acesos em vermelho.

Quando a válvula está mudando o estado da posição de aberta para fechada ou vice versa, as duas saídas estão desenergizadas.

O estado normal aberto ou normal fechado pode ser configurado através do menu principal.

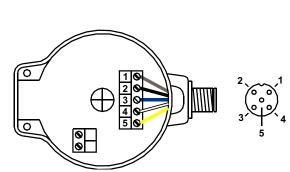
Conexão Elétrica

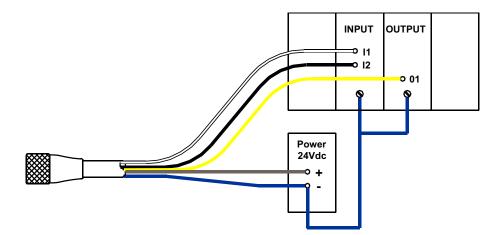
O sensor utiliza um conector padrão M12 de 5 pinos. 2 pinos para a alimentação CC, outros 2 pinos para as saídas PNP e 1 pino para receber o comando de


Conector do Sensor

Pino Função Cor 1 24Vdc (+) marrom 2 PNP 1 preto 3 24Vdc (-) azul 4 PNP₂ branco 5 solenoide amarelo

IMPORTANTE: caso o sensor não seja fornecido com solenóide, o conector será de 4 pinos





Conector Externo

acionamento da solenóide.

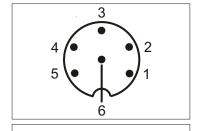
Conexão com o Sistema de Controle

Detecção de Curto Circuito na Saída

Para aumentar a confiabilidade do sistema, esta versão é equipada com um circuito capaz de detectar um curto-circuito nas saídas PNP do sensor, indicando problemas com a fiação elétrica, conexões ou cartões de entradas do controlador.

■Um alarme é gerado pelo sensor e indicado pelo LED de alarme (acima do botão magnético N3) e o display mostra o código do alarme (AL 11) por 5 segundos.

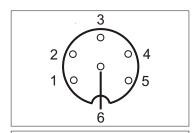
I-VUE: Saída Analógica


O sensor utiliza o mesmo princípio da versão discreta, mas as saídas PNP foram substituídas por uma saída analógica 4 - 20 mA.

Os recursos de visualização permanecem praticamente os mesmos, incluindo a sinalização de válvula aberta e fechada, porém alguns pontos podem ser ligeiramente diferentes daqueles adotados pelo software de CLP.

O sensor com saída analógica pode também ser usado em válvulas de controle ou mesmo em válvulas de diafragma, onde se pretende medir o curso total do eixo da válvula de forma contínua e, assim, o sensor fornece um feedback do sinal analógico.

Conexão Elétrica


O sensor utiliza um conector padrão M12 de 6 pinos.

Conector do Sensor

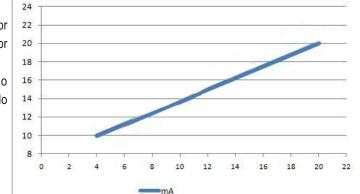
Conector Externo

Válvula Solenóide:

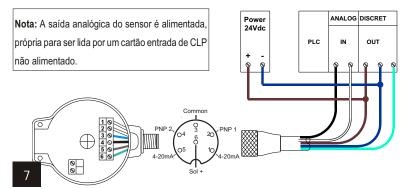
Quando equipado com válvula solenóide, o controle é efetuado pelo CLP, exatamente como a versão com saída discreta. É possível ainda forçar o acionamento da solenóide através do botão magnético N1.

Display Digital:

O display funciona normalmente, com todas as funções, mas a indicação de posição e tempo dos ciclos se torna sem sentido se usado em controle proporcional e devem ser desativados.


Auto-Calibração:

A rotina de auto-calibração também funciona, mas é usada apenas para definir os valores aberto / fechado para os LEDs indicadores de posição, uma vez que não há mais saídas on / off para serem chaveadas. A rotina também armazena o tempo de abertura e fechamento da válvula para o alarme de tempo.


Calibração da Saída Analógica:

A saída analógica irá gerar um sinal 4-20mA proporcional ao movimento do acionador fixado por rosca no eixo do atuador. Durante a rotina de auto-calibração, o sensor configura a escala do sinal transmitido.

Nota-se que quanto menor o movimento do eixo, menor é a precisão de conversão para o sinal analógico, mas mesmo com 5 mm de curso do eixo, obtém-se uma precisão de pelo menos 1%.

Conexão com o Sistema de Controle

I-VUE - AS-Interface

O sensor usa o mesmo principio da versão discreta, mas as saídas PNP e controle da válvula solenóide foram substituídos por uma estrutura de comunicação digital.

A rede AS-Interface suporta até 62 sensores, endereçados via programador manual ou via software de 1A até 31A e 1B até 31B. Possui 4 bits de entrada, 4 de saída e mais 4 de parâmetros.

A topologia na rede AS-Interface é livre, limitada apenas pelo comprimento do cabo (100m), mas esse comprimento pode ser extendido através de repetidores para até 300m.

O sinal de comunicação e os dados são transmitidos através de um cabo com apenas um par de fios, juntamente com a alimentação de 30,5Vcc. É necessário uma fonte de alimentação especial, com indutores para modulação do sinal de comunicação.

O sinal é muito imune a ruídos.

Bits de Comunicação

A posição aberta e fechada da válvula é sinalizada através dos bits 0 e 1.

BITS DE ENTRADA						
bit 3	bit 2 bit 1 bit 0					
erro	erro	aberto	fechado			

Os bits 2 e 3 geram os códigos de alarme.

bit 3	bit 2	Condição do Alarme
0	0	Sem erro
0	1	alarmes: 1, 2, 3 ou 4
1	0	falhas de operação: 6 ou 7
1	1	falhas elétricas: 8, 9, 10 ou 15

O controle da solenóide é implementado ativando o bit 0 da palavra de saída

OUTPUT BITS								
bit 3	bit 2	bit 1	bit 0					
economia de energia	auto-calibração	resete do contador parcial	comando da solenóide					

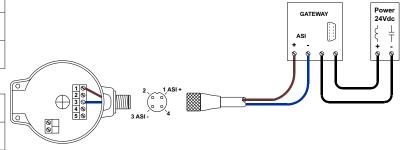
bit 1 - Quando este bit muda de "0" para "1" o contador parcial é zerado.

bit 2 - Quando este bit muda de "0" para "1" o sensor inicia a auto-calibração.

bit 3 - Quando ativado, força o sensor a entrar no modo economia de energia.

Sinalização Especial

Todo o esquema de sinalização sensor I-VUE permanece como descrito anteriormente, mas acrescenta os seguintes diagnósticos:


Display: AL 15 - Tensão de alimentação da rede fora de faixa;

Network led: posicionado acima de S2 indica as seguintes condições:

Aceso verde: alocado na rede e trocando dados. Aceso vermelho: sem comunicação ou endereço 0.

Pisca verde/ verm: falha de periférico

Diagrama de Conexões

Versões AS-Interface

O sensor pode ser fornecido em duas versões:

A3.1 - ASI v2.0, Std address - I/O: 7h ID: 0h ID1: Fh ID2:Fh

A3.2 - ASI v2.1, Ext address - I/O: 7h ID: Ah ID1: Fh ID2: 2h

NOTA: na versão 3.2 não é possivel configurar o modo de economia de energia remotamente, pois esta versão não possui o bit 3 de saída.

I-VUE - DeviceNet

A rede DeviceNet suporta até 64 sensores, endereçados pelos botões magnéticos, com a ajuda do display nos endereços de 01 até 63. A topologia da rede baseia-se na topologia branch line, com uma linha tronco e derivações para os sensores.

A rede utiliza um cabo especial com dois pares de fios blindados, um para 24V e outro para comunicação.

Existem regras que limitam o comprimento do cabo, mas geralmente é usado o tipo de cabo grosso para o tronco com até 500m e o cabo fino para derivação com até 6m, restringindo o total das derivações em 156m.

Bytes de Comunicação

A rede DeviceNet permite múltiplos bytes de comunicação, dependendo da configuração de cada instrumento. O I-VUE utiliza 8 bytes, conforme tabela abaixo:

	BYTE DE ENTRADA #1								
7	6	5 4 3 2		1	0				
_	-	-	-	erro	erro	aberto	fechado		
Válvula aberta				1	0				
	Válvula fechada				0	1			
	válvula em curso				0	0			

O estado da válvula é relatado nos bits 0 e 1. Os bits 2, 3 geram os seguintes códigos de alarme.

bit 3	bit 2	Condição do Alarme
0	0	Sem erro
0	1	alarmes: 1, 2, 3 ou 4
1	0	falhas de operação: 6 ou 7
1	1	falhas elétricas: 8, 9, 10 ou 15

BYTE 2	Posição da válvula 0 to 255 (posição do curso)
BYTE 3	Contador parcial - unidade
BYTE 4	Contador parcial - decimal

Exemplo de Contagem

Bit 4	Bit 3					
Decimal	Unidade	10 ^x	Expoente			
5	2	E	4			
520 ciclos						

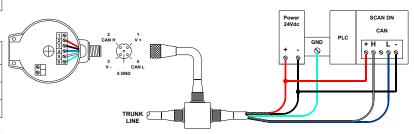
bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
desabilita alarme	restura padrão de fábrica	sleep mode	auto calibração	reset contador parcial	solenóide

O sensor usa o mesmo principio da versão discreta, mas as saídas PNP e controle da válvula solenóide foram substituídos por uma estrutura de comunicação digital.

Sinalização Especial

Todo o esquema de sinalização sensor I-VUE permanece como descrito anteriormente, mas acrescenta os seguintes diagnósticos:

Display: AL 13 - Sensor com endereço duplicado.


AL 14 - Sensor não endereçado.

Network led: posicionado acima de S2 indica as seguintes condições:

Aceso verde: alocado na rede e trocando dados. Aceso vermelho: sem comunicação ou endereço 0.

Pisca verde/ verm: falha de periférico

Diagrama de Conexões

I-VUE - Profibus DP

O perfil DP é adequado para a substituição da transmissão convencional em de sinal 24Vcc (usados em automação industrial) e para a transmissão analógica de 4-20mA na automação de processos.

A rede Profibus DP permite interligar até 127 estações ativas, divididos em 4 segmentos, mas alguns endereços já estão reservados para configuração.

O método de comunicação de rede é o RS-485 e pode chegar, dependendo da taxa de comunicação e uso de repetidores a uma distância de até 15 km.

Bytes de Comunicação

A rede Profibus DP permite múltiplos bytes de comunicação, dependendo da configuração de cada instrumento. O I-VUE utiliza 8 bytes, conforme tabela abaixo:

	INPUT BYTE # 1							
7	6	5 4 3 2				1	0	
-	-		Error	code		open	closed	
	Valve open				1	0		
		Valve closed				0	1	
		In the middle of the way				0	0	

O estado da válvula é relatado nos bits 0 e 1. Os bits 2, 3,4 e 5 geram os seguintes códigos de alame.

bit 5	bit 4	bit 3	bit 2	Display	Alarme
0	0	0	0	-	Sem alarmes
0	0	0	1	1	Curto circuito na solenóide
0	0	1	0	2	Cabo da bobina rompido
0	0	1	1	3	NC
0	1	0	0	4	Alarme tempo de abertura e fechamento
0	1	0	1	5	Alarme do contador parcial
0	1	1	0	6	Tensão de alimentação da rede fora de faixa
0	1	1	1	7	Sensor não endereçado ou sem troca de dados
1	0	0	0	8	NC
1	0	0	1	9	NC

BYTE 2	Posição da válvula 0 to 255 (posição do curso)			
BYTE 3	Contador parcial - decimal			
BYTE 4	TE 4 Contador parcial - unidade			
BYTE 5	E 5 Contador parcial - expoente			
BYTE 6	6 Contador vida útil - decimal			
BYTE 7	Contador vida útil - unidade			
BYTE 8	Contador vida útil - expoente			

Sample Counter

Decimal	Unidade	10 ^x	Expoente	
5	2	E	1	
520 cycles				

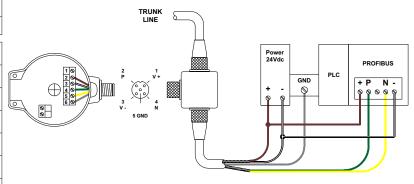
BYTE DE SAÍDA # 1							
bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	-	auto calibração	solenóide

O sensor usa o mesmo principio da versão discreta, mas as saídas PNP e controle da válvula solenóide foram substituídos por uma estrutura de comunicação digital.

Sinalização Especial

Todo o esquema de sinalização sensor I-VUE permanece como descrito anteriormente, mas acrescenta os seguintes diagnósticos:

Display: AL 13 - Sensor com endereço duplicado.


AL 14 - Sensor não endereçado.

Network led: posicionado acima de S2 indica as seguintes condições:

Aceso verde: alocado na rede e trocando dados. Aceso vermelho: sem comunicação ou endereço 0.

Pisca verde/ verm: falha de periférico.

Diagrama de Conexões

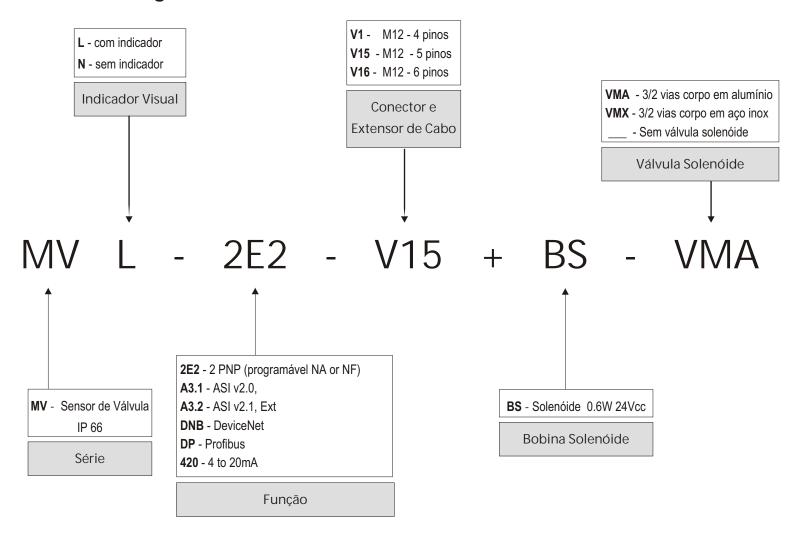
Especificações do Sensor

Detecção do curso	de 3 à 50mm
Resolução	0.2mm
Velocidade Máxima	1m/s
Sensoriamento	microprocessador rápido
Módulo Sensor	encapsulado com resina
Display	4 digitos, 7 segmentos
LED Indic. de posição	7 LEDs: verdes para aberto e vermelho fechado
Indicador visual local	indicador mecânico
Botões Magnéticos	3 botões magnéticos para configuração
Conexões	M12 - 5 pinos
Invólucro	PBT (ABS para parte transparente)
Vedações	buna N
Grau de Proteção	IP66
Temperatura de Oper.	-20°C à +70°C

Especificações da Solenóide

_				
	В	obina		
	Alimentação	24Vcc 10%		
	Capacidade	20mA - 0,6W		
	Encapsulamento	resina epoxi		
Corpo				
	Tipo	pilotada		
	Princípio	carretel		
1	Número de vias/ pos. 3 vias / 2 posiçõ			
	Conexões	1/8" NPT		
1	Acionador Manual	sim		
1	Pressão	1.5 a 7 bar		
$\frac{1}{2}$	Cv	0.9		
	Taxa de Vazão	250 NI/min		
	Material	VMA: Aluminio VMX: aço inox		
	Temperatura de Oper.	-10°C à +70°C		

Escopo de Fornecimento



Acessórios Opcionais

de pinos do conector do sensor, por exemplo: P54 (4 pinos), P35 (5 pinos)

Chave de Códigos

IMPORTANTE: As versões PNP sem solenóide e AS-Interface são fornecidos com conector M12 de 4 pinos (código V1), outros modelos: PNP com solenóide, DeviceNet e Profibus DP são fornecidos com conector M12 de 5 pinos (código V15) e a versão analógica é fornecida com conector M12 de 6 pinos (código V16).

www.sense.com.br

NOSSOS ENDEREÇOS:

ESCRITÓRIO CENTRAL - SÃO PAULO

Rua Tuiuti, 1237 - Tatuapé São Paulo - SP - Cep: 03081-012 Fone: (11) 2145-0444 Fax: (11) 2145-0404 vendas@sense.com.br

FÁBRICA - MINAS GERAIS

Av. Joaquim Moreira Carneiro. 600 - Santana Santa Rita do Sapucaí - MG - Cep: 37540-000 Fone: (35) 3471-2555 Fax: (35) 3471-2033

SENSE - Campinas

Av. Barão de Itapura, 2127 - sala: 63 Campinas-SP - Cep: 13020-432 Fone: (19) 3239-1888 Fone / Fax: (19) 3239-1999 campinas@sense.com.br

SENSE - Porto Alegre

Rua Itapeva, 80 - conj. 302 - Passo da Areia Porto Alegre-RS - Cep: 91350-080 Fone: (51) 3345-1058 Fax: (51) 3341-6699 palegre@sense.com.br

SENSE - Rio de Janeiro

Rua Almirante Tamandaré, 66 sala: 408 - Flamengo Rio de Janeiro - RJ - Cep: 22210-060 Fone: (21) 2557-2526 Fax: (21) 2556-8505 rio@sense.com.br

Distribuidor